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ABSTRACT 
The flow field around an oscillating airfoil is evaluated numerically, using the stream function-vorticity 
formulation of the Navier-Stokes equations. An algebraic turbulence model, adapted from the 
Baldwin-Lomax model, is included in solving the time-averaged Reynolds equations. Computed pressure 
distribution for turbulent flow past a stationary airfoil is compared with measurements. Finally, for the 
oscillating airfoil cases, the computations are performed in order to determine the history of pressure 
distribution and to identify the nature of the vortex initiation on the suction surface for laminar and 
turbulent flow. Our results for laminar flow show that minute circular shaped vortices are formed on the 
surface prior to the dominant vortex formation. Flattened vortices are formed on the surface in turbulent 
flow, prior to the formation of the dominant large vortex structure. 
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INTRODUCTION 

Numerical solution to the Navier-Stokes equations is usually based upon primitive variable 
form, velocity-vorticity form or stream function-vorticity form. Many researchers have used 
the primitive variable form of the compressible Navier-Stokes equations for analysing high 
Reynolds number flows, making use of either the Beam and Warming approximate factorization 
scheme1 or its variations2,3. It is known that the unsteady compressible Navier-Stokes equations 
are a mixed set of hyperbolic(space)-parabolic(time) equations, while the unsteady 
incompressible Navier-Stokes equations are a mixed set of elliptic(space)-parabolic(time) 
equations. As a consequence, the solution methods for the incompressible Navier-Stokes 
equations involve iterations at every time step, unlike the methods for the compressible form 
of the equations. The compressible and incompressible forms of the equations are solved using 
different numerical techniques. A zonal method was used by Wu et al.4 for solving the 
velocity-vorticity form of the equations. Boisson et al.5 have numerically predicted low Reynolds 
number turbulent flow around a cylinder using the velocity-vorticity form. Daube et al.6 

simulated laminar flow around an oscillating airfoil employing the stream function-vorticity 
form of the Navier-Stokes equations for Re = 3000. 

Mehta7 developed an algorithm to analyse laminar external flows up to Re = 104, which used 
the stream function-vorticity formulation. This paper describes the modifications of Mehta's 
algorithm to predict high Reynolds number incompressible turbulent flows. The Reynolds 
time-averaged vorticity transport equation and the stream function equation are solved. An 
analysis of the computed Navier-Stokes solution, emphasizing the vortex initiation on the surface 
of an oscillating airfoil and the time history of pressure distribution, is the subject matter of this 
paper. 
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The calculated pressure distribution for steady flow past a NACA 0012 airfoil is compared 
with measurements. Next, the velocity distribution in the near wake for the oscillating case 
under stall limit is considered for quantitative comparison. Finally, laminar and turbulent flow 
fields around an airfoil, which oscillates in the stall regime, are investigated. The computed 
results are compared qualitatively with available experimental results and the phenomenon of 
dynamic stall is studied to identify the stages and to distinguish vortex initiation. 

MATHEMATICAL MODEL 

For incompressible, unsteady flow with constant molecular viscosity and in the absence of body 
forces, a non-dimensional coordinate invariant form of the time-averaged Reynolds equation is 
given by9: 

the total derivative of velocity: 

where 

Here, vN is the ratio of kinematic eddy viscosity to kinematic molecular viscosity. The other 
notations are: Re, Reynolds number, p, pressure, V, velocity vector and I, identity tensor. Also, 
note that represents the symmetric rate of strain dyadic. The free stream velocity 
U∞ and the radius of the circle, a, associated with the grid transformation are the characteristic 
velocity and length scales respectively. The characteristic time is chosen, as in Reference 7, such 
that time t' = t(a/U∞). 

If the coordinate system is fixed with respect to the airfoil which is rotating with an angular 
velocity Ω relative to the inertial system, the velocity V relative to the non-Newtonian reference 
frame (NNRF) of a point located by the vector r is given by, 

VI = V + Ω × r (3) 
The angular velocity is defined as positive in the counter-clockwise direction. The coordinate 
system is illustrated in Figure 1. The axes OX-OY form the NNRF, and OX1-OY1 form the 
inertial reference frame. In the current iuvestigations, the direction OX is the chordwise direction 
and OY is the pitchwise direction. Also, the axis OX is referred to as the centreline. The distances 
x and y, are measured along OX and normal direction OY respectively. For positive values of 
a, the region above the centreline is considered as the suction region and below it as the pressure 
region. 

The governing equation with respect to the NNRF notation is: 

Here, the first term represents the sum of local and convective acceleration. The next three terms 
correspond to Eulers acceleration, Coriolis acceleration and centrifugal acceleration respectively. 
The right hand side represents the normal force and shear force created in the flow per unit mass. 

Now define vorticity: and the stream function by equating where 
ψ = (0, 0, ψ). The vorticity transport equation based on Boussinesq hypothesis for Reynolds 
stresses is obtained by taking the curl of (4). Note that the Coriolis and centrifugal forces vanish 
in the transformation. 
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The time-averaged vorticity equation is obtained by considering the curl of (4) as: 

where Sω is com prised of elements referred to as source terms by Gosman et al.10 and for 
two-dimensional flow, the vorticity vector, ω = (0, 0, ω). The source terms in the cartesian 
coordinates for two dimensional flow is given by11,12: 

The source terms in (5) contain both second-order derivative terms in vorticity and fourth-order 
derivative terms in stream function and they are proven to be negligible11,12. 

Hence for the present computations, the time-averaged vorticity transport equation of the form, 

and the stream function equation: 

are solved. 
The coordiuate transformation maps the field exterior to the body into a unit circle. The 

vorticity transport equation (6) in the Joukowski plane (r – θ) is: 

and the stream function ψ is defined by the equation: 

in which rH2 is the Jacobian of the coordinate transformation from the physical to Joukowski 
planes (x, y) → (r, θ). 
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Factorization scheme 
The philosophy adopted in the numerical scheme is to let the governing equation and the 

non-slip surface boundary condition dictate the flow field with a weak condition at the outer 
boundary. The exact factorizing scheme applied to the vorticity transport equation, taking into 
account the Reynolds stress terms, is described below. Equation (8) in the p-θ plane is: 

where ωI = ω + 2Ω. Now, by defining A = H2r2(Re/L) and the differential operators 

and 

neglecting the subscript I for brevity, (3) reduces to the form: 

Using a three point backward differencing in time, (11) is: 

The three point backward differencing is formulated by choosing T1 = 3, T2 = –4, and T3 = 1; 
while the two point scheme is formulated by setting T1 = 2, T2 = –2 and T3 = 0. The order 
of differencing in time, m = 2 for three point differencing, and m = 1, for two point differencing. 
Whenever the time step during the computation is halved, m = 1 for that particular time step. 

The factorized form of the above equation is: 

The above equations are the exact factorized form of the vorticity transport equation. The 
approximate factorization scheme1 or its variations2,3 either neglect the cross derivative terms 
or lag the evaluation of these terms by one time step. Both these operations will reduce the time 
accuracy. 

The derivatives with respect to θ are replaced by fourth-order accurate rational fractions 
utilizing a fast Fourier transform algorithm, and the derivatives in the p direction are 
approximated by second order differences. The fourth-order accurate form of differencing is 
stated as follows: 
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and 

The stream function equation is solved using the fast Fourier transform technique coupled with 
the Pade differencing7,8. The Fourier transform of the stream function equation in the 
computational plane p-θ is solved. The surface vorticity is evaluated using the second-order 
accurate Woods formulation7. The outer boundary condition is such that the inertia force is 
predominant, and at the surface, no-slip boundary condition is enforced as shown in Figure 2. 

We improved the algorithm in Reference 7 to predict high Reynolds number flows as follows. 
In order to solve the above-mentioned factorized form of the vorticity transport equation and 
the stream function equation for every time step, the stream function and vorticity values are 
predicted from previous time levels, at the beginning of the intra-time step iteration7. Always 
the interior values of vorticity and stream function are chosen to be the most recent values in 
calculating the Reynolds stresses. Then, the surface vorticity is evaluated ensuring the no-slip 
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boundary condition. The surface vorticity is then underrelaxed at every time step n as follows, 
until convergence is attained: 

where s is the iteration index and n is the time-step. The computational scheme is sensitive to 
the choice of the relaxation parameter β, and we propose the choice of this parameter as follows: 

β = λH2m (18) 
It can be observed that, since H is a scale factor, (18) is a generalized equation in which the 

parameter β is a smooth function of the fineness of the grid distribution on the surface. The 
constants λ and m are varied independently for the minimum number of iterations for convergence 
to a prescribed change in vorticity on the surface. These constants depend on the free stream 
Reynolds number and the profile of the body. Although the values of the relaxation parameter 
are not unique, the form of (18) relating the relaxation parameter to the Jacobian is the interesting 
feature of the formula. The computational grid arrangement is comprised of 128 grid points in 
the azimuthal direction and 96 grid points in the pseudo-radial direction. The time step At is 
chosen as constant. The residue on the evaluation of surface vorticity 
between successive iterations at every time step was 2 × 10 - 4 in most of the computations. 
Dependent on the size of time step and the strength of vorticity change, the number of iterations 
for convergence of the surface vorticity varied from 2 to 12. 

Despite great progress in turbulence research, the use of higher equation models for a problem 
of this kind does not appear to merit the computational effort to date. This can be attributed 
to the unavailability of the transport constants, damping functions and the nature of wall function 
for massively separated flows. It is known that an algebraic turbulence model, without the 
requirement to evaluate the boundary layer thickness, is suitable for Navier-Stokes codes4,13. 
Hence the model due to Baldwin and Lomax has been used13. The model has been modified 
to the non-dimensional form suitable for the present formulation. The Baldwin-Lomax model 
is used in attached and separated flow regions as well as in wakes. There exist a fair amount 
of discrepancies13 in determining the most relevant peak in the vorticity function F = Dyω, 
where D is the damping function. In the present calculation, the peak is confined to the outer 
layer of the boundary layer by choosing the value in the neighbourhood of the region where 
(ω/ωwall) < 0.002. After the separation point, the nearest peak to the wall is chosen to capture 
the effects of the secondary vortices13, for the analysis of flow around a cylinder. The inner layer 
has been modified for free turbulence effects in the near wake. A variation of the algebraic model 
proposed by Cebeci et al.14 has been used to accomplish this (see Reference 7 for details). 

RESULTS AND DISCUSSION 

Preliminary investigations 
We have evaluated steady-state solution for flow past a NACA 0012 airfoil at Re = 760,000, 

as experimental data are available at this Reynolds number15. Pressure distribution on the 
surface has been obtained by integrating the tangential component of momentum equation (1) 
on the surface, using a fourth-order accurate difference scheme. The tangential component of 
(1) on the surface can be written as: 

The agreement with the pressure distribution improved significantly, as explained later, by using 
second-order accurate one-sided differences for the transverse gradient of vorticity in (19). This 
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improvement for laminar flow has been reported by Roache & Salari3 by comparing the results 
of the present code with that of a compressible Navier-Stokes code for flow past a NACA 0012 
airfoil at Re = 5000. Figure 3 shows the comparison of pressure coefficient8 with experimental 
results for fully turbulent flow. Further, the comparison illustrates that the pressure distribution 
on the surface is dependent on the distribution of eddy viscosity in the normal direction. Thus, 
determination of the pressure coefficient using surface pressure quadrature expressions can serve 
as a check for the distribution of eddy viscosity near the wall. 

Next, an oscillating airfoil case under the stall regime is considered for quantitative comparison 
with available experimental results16 in Figure 4. It may be noted that the results of numerical 
computations and experiments vary from one cycle of oscillation to another13,16,19. The airfoil 
completes one cycle of oscillation, as the flow traverses through approximately three times the 
chord distance. 

There are 16 grid points at x/L = 1.007 and 10 points at x/L = 1.02, within 
–0.05 < y/L < 0.05. The computed velocity profiles are smoothed by using a parametric 
fifth-order polynomial and are shown in Reference 8. Figure 4 presents the variation of chordwise 
velocity in the transverse direction at x/L = 1.007 for four successive cycles when the 
instantaneous angle of attack is zero. The scatter in the computed results for a particular angle 
of attack during the four cycles of oscillation is identified. Hence comparison of computed results 
with experimental results must be made with caution. The experimental results16,18 and the 
results of numerical calculations from one cycle of oscillation to another vary, despite the 
externally controlled variables remain the same. The reasons for this unavoidable variation of 
the results within the context of experiments and numerical computations differ from each other. 
The likely causes include inhomogeneous medium, wind tunnel effects, vibration and human 
factors. In a computational environment, the scatter of results occur as a result of truncation 
error, inadequate grid resolution, inaccurate far field boundary conditions, inability to model 
the turbulence correctly and the limited domain of computation (6 times the chord distance 
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here). Experimentalists usually represent the results as an average over a series of cycles, ranging 
from 50 to 250, depending on the severity of the case under study16,19. 

However, numerical experiments do not seem to proceed up to this many cycles because of 
the high cost of computation. In addition to this, it may be worthwhile to note the purpose of 
computational fluid dynamics which is to bring physical insight into fluid mechanics problems, 
that are not forthcoming from experiments17, rather than duplicating experimental results. 

With these in mind the following is a qualitative study of dynamic stall to identify the stages, 
and to distinguish vortex initiation between laminar and turbulent flow cases. 

Flow field around an oscillating airfoil under stalled conditions 
We have computed a laminar flow case for an oscillating NACA 0012 airfoil at a Reynolds 

number of 21,000. For this case, the angle of attack is given by α = 10 – 10 cos(ft) and the 
reduced frequency, k, is = (fl/2U∞) = 0.25. Here, f is the circular frequency of oscillation, t is 
the non-dimensional time since the resumption of oscillation and l is the chord length. In the 
non-dimensional sense, the airfoil has to traverse through twelve times the chord distance 
approximately for a complete cycle of oscillation. The flow parameters have been chosen to 
compare results with the experimental results presented by McAlister et al.18. This case 
corresponds to a turbulent near wake and laminar flow field around the airfoil. Although 
McAlister et al. have reported the history of the flow behaviour, based on their flow visualization 
experiments, this paper attempts to explain the behaviour based on the pressure distribution, 
computed streamlines and vorticity contours. The details of the complete flow behaviour for a 
complete cycle of oscillation are represented in Reference 8. 

Figure 5 illustrates the vortex formation stage during the pitch-up motion of the airfoil, in 
terms of flow visualization diagrams coupled with the computed streamlines and vorticity 
contours. It is noted that the actual flow visualization diagrams neither represent the streamlines 
nor the vorticity contours. That is, the flow visualization results in Figure 5 are the trajectories 
of hydrogen bubbles and can be considered as representative of the viscous regions18. 

History of surface pressure 
Pressure distribution on the surface can often be determined from experiments and it represents 

the normal stress on the surface. Hence, various researchers have used the surface pressure 
distribution in order to identify the flow characteristics. The variation of pressure coefficient on 
the upper surface of the airfoil as a function of chord distance and the angle of attack is depicted 
in Figure 6. The effect of the initiation growth and shedding of the vortex can be analysed by 
comparing the pressure distribution to the structure of the flow field illustrated in terms of 
streamlines and vorticity contours8. The leading edge pressure (suction) peak at α = 17.1 degrees 
gives an indication that the dynamic stall has begun. That is, the formation of the stall vortex 
near the leading edge, although small in size, creates the sharp gradient in pressure coefficient 
illustrated in Figure 6. The simulations show8 that a vortex structure forms near the trailing 
edge as α is increased, and this structure eventually merges with the leading edge vortex to form 
the dominant vortex structure on the upper surface. As α increases further, this vortex grows 
in size as it moves downstream on the airfoil. At about α = 19.7° a secondary vortex forms near 
the leading edge. The dip in the pressure distribution (Figure 6) is apparently caused due to this 
sequence of events. As soon as the pitching motion reverses in direction the clockwise vortex 
initiated at the leading edge grows in size considerably, and leaves the surface at about 
three-quarters of the chord distance from the leading edge (a reduces from 18.7 to 17.1°). In the 
meantime, a third vortex is formed around the quarter-chord location. This vortex grows to a 
lesser size than its predecessor and travels on the surface of the airfoil and leaves to the near 
wake from the trailing edge (α = 10°, t = 84.9). Following this vortex, the fourth vortex is formed 
and leaves the surface from the trailing edge. However, it can be observed that the size and 
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intensity of the vortices reduce, as the angle of attack approaches zero, during the pitch-down 
motion. This sequence of events during a complete cycle of oscillation can be divided into three 
different stages; movement of suction peak towards the leading edge with increasing magnitude 
(0-17.1°, stage 1); creation of multiple peaks of reduced magnitude and their movement towards 
the trailing edge (17.1-18.7° pitch-down, stage 2) and the flattening of the pressure distribution 
during the rest of the cycle (stage 3). The lift coefficient fluctuates from –0.5 to 2.5. The vortex 
formation and its shedding can be inferred from this diagram. During the pitch up motion of 
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the airfoil the shedding of the leading edge vortex causes an increase in lift before the maximum 
angle of attack is reached. The maximum drag coefficient (= 0.73) occurs at the beginning of 
the downward motion. This behaviour is observed by McCroskey et al.19 during their 
experiments. 

The variation of the streamline pattern for the same incidence between successive cycles is 
shown in Figure 7. An estimate of variation of the results from cycle to cycle is in order. The 
scatter of the results from cycle to cycle is quoted by Lomax and Mehta13, by comparing 
computed results with measurements, averaged over a series of cycles. McAlister et al.18 have 
stated that the main events in the flow field vary by 2 degrees from cycle to cycle. 

Effect of turbulence on the vortex initiation 
We have computed a turbulent flow case for an oscillating NACA 0012 airfoil at a Reynolds 

number of 1 × 106, as illustrated in Figure 8. The behaviour of the streamline representing the 
surface reveals valuable information regarding the bubble formation on the suction surface 
during the pitch-up motion. A comparison of the turbulent case with the laminar case, reveals 
the following. In the laminar flow case, numerous small vortices are formed on the suction 
surface prior to the dominant vortex formation (see discussion above), whereas for the turbulent 
flow case, these initial vortices on the surface are more flat and less numerous. These minute 
vortices in turbulent flow reduce in size towards the leading edge, and are formed by the upward 
movement of the separation point as well as the effect from the curvature of the near wake. The 
vorticity contours2 also illustrate the above-mentioned type of vortex initiation. 

CONCLUSIONS 

An improved relaxation parameter is utilized to predict high Reynolds number laminar and 
turbulent external flows around two-dimensional bodies. The vorticity-stream function 
formulation is used to analyse these external flows of engineering interest. Comparison of the 
computed results using algebraic turbulence models, with experimental results, is very favourable. 
It is well known that comparison of local skin friction coefficient is a reasonable criterion to 
check the turbulence model on the surface, as it represents the non-dimensional shear stress at 
the wall. The present analysis demonstrates that the comparison of pressure distribution on the 
surface also serves as an index to check the validity of the turbulence model in the region away 
from the surface. 
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The paper identifies the three different stages in the pressure distribution, characteristic of 
dynamic stall on oscillating airfoils. It is possible to classify different cases of oscillation based 
on these stages. This information would aid in classifying the dynamic stall cases. 

In the case of oscillation with stall, circular minute vortices on the surface precede the formation 
of the dominant vortex for the laminar case. For the turbulent case, however, several flat-shaped 
vortices are formed on the surface prior to the appearance of the dominant vortex. Usually 
aerodynamic design would aim at delaying the onset of stall for superior airfoil performance. 
Our results from supercomputer simulations are qualitatively consistent with previous 
experimental and numerical results reported in the literature. Where quantitative results are 
available, the presently reported simulations appear to predict the observed behaviour within 
the experimental errors realized. 
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